Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(58): 87268-87280, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802316

RESUMO

This study aims to find the interaction between ionome and metabolome profiles of Pteris vittata L., an arsenic hyperaccumulator plant, to reveal its metal tolerance mechanism. Therefore, at the Pb-Zn mining sites located in Thai Nguyen province, Vietnam, where these species dominate, soil and plant samples were collected. Their multi-element compositions were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and thus referred to as the "ionomics" approach. In parallel, the widely targeted metabolomics profiles of these plant samples were performed using liquid chromatography-tandem mass spectrometry (UPLC-QqQ-MS). Nineteen elements, including both metals and nonmetals, were detected and quantified in both tissues of thirty-five plant individuals. A comparison of these elements' levels in two tissues showed that above-ground parts accumulated more As and inorganic P, whereas Zn, Pb, and Sb were raised mostly in the under-ground samples. The partial least squares regression (PLSR) model predicting the level of each element by the whole metabolome indicated that the enhancement of flavonoids content plays an essential contribution in adaptation with the higher levels of Pb, Ag, and Ni accumulated in the aerial part, and Mn, Pb in subterranean part. Moreover, the models also highlighted the effect of Mn and Pb on the metabolic induction of adenosine derivatives in subterranean parts. At the same time, the model presented the most contribution of As to the metabolisms of the amino acids of this tissue. On those accounts, the developed integration approach linking the ionomics and metabolomics data of P. vittata improved the understanding of the molecular mechanism of hyperaccumulation characteristics and provided markers that could be targeted in future investigations.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Humanos , Pteris/metabolismo , Vietnã , Chumbo/análise , Tailândia , Poluentes do Solo/análise , Biodegradação Ambiental , Arsênio/análise , Plantas/metabolismo
2.
Polymers (Basel) ; 13(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064803

RESUMO

In the present work, adsorption of anionic azo dye, new coccine (NCC) on silica and silica-gel in an aquatic environment was discovered. Effective conditions such as adsorption time, pH, the influence of dosage on NCC adsorption using strong polycation, poly-diallyl-dimethylammonium chloride (PDADMAC) modified silica (PMS) and PDADMAC modified silica-gel (PMSG) were systematically studied. The removal of NCC using PMS and PMSG were much higher than that using raw silica and silica-gel without PDADMAC in all pH ranges from 3 to 10. The adsorption of NCC onto PMS and PMSG was achieved maxima at the same conditions of contact time 30 min, pH 6. The optimum adsorbent dosages of PMS and PMSG for NCC removal were 10 and 20 mg·mL-1, respectively. Experimental results of NCC adsorption isotherms onto PMS and PMSG at different ionic strength were fitted by Langmuir and Freundlich models. The NCC removal efficiencies using PMS and PMSG were higher than 87%, indicating that PMS and PMSG are novel and reusable adsorbents for removal of anionic dye. Based on adsorption isotherms, and surface group changes after PDADMAC modification and NCC adsorption examined by Fourier transform infrared spectroscopy (FTIR), we demonstrate that electrostatic interaction between positively charged adsorbents' surfaces and negative sulfonic groups of NCC are the main driving force for anionic azo dye adsorption onto PMS and PMGS adsorbents.

3.
J Chromatogr A ; 1649: 462188, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34034108

RESUMO

A new green method for trace level quantification of four herbicides, glyphosate (GLYP), glufosinate (GLUF), and their main metabolites, aminomethylphosphonic acid (AMPA) and 3-(methyl-phosphinico)-propionic acid (MPPA), was developed. The purification step without any derivatization was conducted by solid-phase extraction using Chelex-100 resin in the Fe (III) form, followed by elution with 5% NH4OH. The four analytes were quantified by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. The developed extraction method was validated on five fresh and sea water matrices with mean recoveries ranging from 80.1% to 109.4% (relative standard deviation < 20%). The extraction conditions were evaluated and certified for the high applicability of the extraction method too. The limits of detection (ng/L) in the five water matrices were in ranges 0.70 - 4.0, 2.4 - 3.9, 1.8 - 4.7, and 1.6 - 4.0 for GLYP, AMPA, GLUF, and MPPA, respectively. The method was successfully applied to detect the four compounds in surface waters sampled along the Red River Delta region in July 2019. The highest concentrations were detected at 565, 1,330, 234, and 871 ng/L for GLYP, AMPA, GLUF, and MPPA, respectively. These results showed the potential capacity of this new method for convenient monitoring of herbicides and their metabolites in the diverse natural water system.


Assuntos
Aminobutiratos/isolamento & purificação , Glicina/análogos & derivados , Organofosfonatos/isolamento & purificação , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/isolamento & purificação , Aminobutiratos/análise , Cromatografia Líquida de Alta Pressão , Água Doce/química , Glicina/análise , Glicina/isolamento & purificação , Herbicidas/análise , Herbicidas/isolamento & purificação , Organofosfonatos/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...